
Notebook C++
About Move Semantics

Andreas Fertig

Andreas Fertig

Notebook C++

About Move Semantics

1. Edition

© 2022 Andreas Fertig
https://AndreasFertig.com
All rights reserved

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bib-
liographic data are available on the Internet at http://dnb.dnb.de.

The work including all its parts is protected by copyright. Any use outside the limits of the copyright law
requires the prior consent of the author. This applies in particular to copying, editing, translating and
saving and processing in electronic systems.

The reproduction of common names, trade names, trade names, etc. in this work does not justify
the assumption that such names are to be regarded as free within the meaning of the trademark
and trademark protection legislation and therefore may be used by everyone, even without special
identification.

Planning and text:
Andreas Fertig

Cover art and illustrations:
Franziska Panter
https://franziskapanter.com

Published by:
Fertig Publications
https://andreasfertig.com

ISBN: 978-3-949323-03-4

This book is available as ebook at https://leanpub.com/notebookcpp-tips-and-tricks-with-templates

https://AndreasFertig.com
http://dnb.dnb.de
https://franziskapanter.com
https://andreasfertig.com%20
https://leanpub.com/notebookcpp-tips-and-tricks-with-templates

To Franziska, without her, I would not have accomplished this project.
Never tired of reminding me of my talents, driving me when I’m tired, keep-
ing my focus on. A lot of more could be written here, I like to close with:
Thank You!

4

Foreword

This book is part of a series which is calledNotebook C++. The idea is that most of us
have some notes about do’s and don’ts, how stuff works, or tips and tricks to keep in
mind. It is probably one of the most frequent questions I get during training classes.
I have such a list too. In this series, I will publish mine.

My idea is to create multiple short books (ok what is the number of pages re-
quired to call it a book or short?) about various topics. I currently plan to share
tips about templates (this book), lambdas, and trap-like situations like dangling ref-
erences. There will probably be more. They are available for early birds on Leanpub.
Later they will also be available as a printed version.

Why several short books and not a single large one? Simply to give you a choice.
Maybe, you are already fine with one topic but have an interest in tips for another
topic. Why then by a large book where you need only a portion of it? Another thing
is that I personally like printed books. There I find smaller ones more comfortable
when carrying them around like on a train or airplane. Plus, they are not that heavy
then, which is also an advantage.

Stuttgart, September 2022 Andreas Fertig

6

Using Code Examples

This book exists to assist you during your daily job life or hobbies. All examples in
this book are released under the MIT license.

The main reason for choosing the MIT license was to avoid uncertainty. It is a
well-established open-source license and comes with few restrictions. That should
make it easy to use it even in closed-source projects. If you need a dedicated license
or have questions about the existing licensing, feel free to contact me.

Code download

The source code for this book’s examples is available at
https://github.com/andreasfertig/notebookcpp-about-move-semantics.

Used Compilers

For those of you who would like to try out the code with the same compilers and
revisions I used, here you go:

! GCC 13.2.0

! Clang 17.0.0

https://github.com/andreasfertig/notebookcpp-about-move-semantics

8

About the Author

Andreas Fertig, CEO of Unique Code GmbH, is an experienced trainer and lecturer
for C++ for standards 11 to 23.

Andreas is involved in the C++ standardization committee, developing the
new standards. At international conferences, he presents how code can be written
better. He publishes specialist articles, e.g., for iX magazine, and has published
several textbooks on C++.

With C++ Insights (cppinsights.io), Andreas has created an internationally rec-
ognized tool that enables users to look behind the scenes of C++ and thus to
understand constructs even better.

Before training and consulting, he worked for Philips Medizin Systeme GmbH for
ten years as a C++ software developer and architect focusing on embedded systems.

You can find him online at andreasfertig.com and his blog at andreasfertig.blog.

https://cppinsights.io
https://andreasfertig.com
https://andreasfertig.blog

10

About the Book

The idea of the Notebook C++ series is to share some tips and tricks about various
C++ elements. All books in this series are somewhat short and small books, one for
each major topic. Such that the paperback version can be carried around easily.

About Move Semantics

This part of the series is all about move semantics. I will introduce the feature to
you in an maybe unconventional but easy-to-understand way. Move semantics are
nothing special, afterall.

We’ll start looking at what move semantics is, how it works, and why we should
most times stay away from std::move. We establish some rules about when to use
std::move, when std::forward. You learn about why not tomove return values or
temporary objects. You want to get the best speed from your custom data type and
the Standard Template Library (STL)? No problem, you will learn what your class
must look like to achieve this.

In the end, you also learn about some feature that is not seen that often,
ref-qualifiers, how they work, why they are there, and when to use them.

All in all, after having read this book, you have a solid understanding of move
semantics.

12

The books style

The book corresponds to my general style, which is a mix of explaining and sharing
code examples for better illustration and understanding. As I’m the creator of C++
Insights , which I created to be able to show more things rather than just telling,
there will be examples that peek behind the scenes.

The headings are inspired by Scott Meyers Effective C++ series [1].

As we have the joy to have multiple standards, we also need a way to address
which standard is used. This is something I often experience when customizing my
classes together with customers. They have only C++14 available. Or the plan to
upgrade to C++17 but currently are on C++11. In this book, I use my experience
and my system from my classes and talks. Therefore, my slides have a small marker
on the upper right corner, stating which standard the functionality belongs too. The
default assumption there is that it is C++11. However, a couple of Notes refer to
C++98 and are still valid in newer versions of C++. All Notes are labeled with the
standard it can first be used, for example, C++11 . There are also overview pages
for fast navigation and to skip promising Notes which are impossible because the
standard is not available.

Style and conventions

As we are blessed with multiple versions of the ISO C++ standard, we need a way to
specify the exact version of ISO C++ to which we are referring at any given time. I
often run into this when customizing my classes with customers. Some may only
have C++14, while others may be planning to upgrade to C++17 while temporarily
sticking to C++11. In this book, I draw from my experiences and use a system I’ve
developed through providing classes and talks. In presentations, my slides each
have a small marker in the upper right corner indicating the standard to which the
demonstrated functionality belongs. The default assumption there is that the code
is C++11. However, a couple of Notes in this book refer to C++98 and are still valid

About the Book 13

in newer versions of C++. All Notes are labeled with the standard it can first be
used, for example, C++11 . There are also overview pages that allow you to navigate
more quickly or skip otherwise promising Notes that may be inapplicable due to the
standard to which you’re bound.

The following shows the execution of a program. I used the Linux way here and
skipped supplying the desired output name, resulting in a.out as the program name.

O
u
tp
u
t$./a.out

Hello, Notebook C++!

! <string> stands for a header file named string.

! [[xyz]]marks a C++ attribute with the name xyz.

Feedback

This book is published on Leanpub as a digital version. The printed version will
follow. If you can specify the book type you’re referencing when sending feedback,
that would be a huge help.

In any case, I appreciate your feedback. Please report it to me, whether it be a
typo, a grammatical error, an issue with naming variables or functions, or another
logical concern. You can send your feedback to books@andreasfertig.com.

PDF/Paperback vs. epub

As with most of my material, the book is written in LATEX. The epub version is
generated by a custom script which first translates LATEX into Markdown and then
translates Markdown into epub with the help of pandoc. This comes with some
limitations. Currently, the bibliography does not use the same style as the PDF, and
the index is missing in the epub.

https://leanpub.com/notebookcpp-tips-and-tricks-with-templates
mailto:books@andreasfertig.com
https://pandoc.org/

14

Another issue I have with the epub is that I do not own a reader device my-
self. I tested it with Apple’s Books.However, please tell me if you have better
knowledge of optimizing the output.

Revision History

2022-09-12: First release (Leanpub)
2024-01-18: More notes and updates (Leanpub)

About the Tools

In this book, I will use two tools that you can use to verify the results of playing with
different versions and combinations of the examples you find in this book.

Compiler Explorer

A website created by Matt Godbolt: https://compiler-explorer.com.
Initially, Compiler Explorer showed the assembly output resulting from a user’s

C+ code snippet. After some time, Compiler Explorer became an online Integrated
Development Environment (IDE) with a wide variety of features. The website has a
whole lot of compilers that you can use to compile your source code online. One of
the newer features is the ability to execute your code online, optionally, by passing
command line options.

C++ Insights

The following is a tool with a website I created: https://cppinsights.io.
C++ Insights is a clang Abstract Syntax Tree (AST) based source-to-source trans-

formation tool. It showsC++ after the font-end stage of the compiler. With that, C++
Insights shows code from the point of view of a compiler. Making implicit conver-
sions or template instantiation visible are just two among a lot of things it does. It is
available as a command-line utility and as a website.

https://compiler-explorer.com
https://cppinsights.io

16

Table of Contents

Notes by Standard at a Glance 19
Notes belonging to C++11 . 19
Notes belonging to C++17 . 20
Notes belonging to C++20 . 21

2 Move Semantics 23
Note 1: Understand the type of move used in C++ 25
Note 2: Move is nothing special . 27
Note 3: Move vs. copy . 31
Note 4: Move is a partial swap . 35
Note 5: std::move doesn’t move . 37
Note 6: Understand the value categories 39
Note 7: Make your rvalue parameters modifiable 43
Note 8: Only classes with dynamic memory profit from move

semantics . 45
Note 9: A moved-from object isn’t special 47
Note 10: Never use std::move on a return value 49
Note 11: Remember to forward the move to all the base classes 51
Note 12: Never use std::move on a temporary 55
Note 13: When is it a forwarding reference 59
Note 14: When to use std::forward 61
Note 15: Your custom class and the STL 65
Note 16: Known when you lose a special member 69

18

Note 17: Even with a defaulted destructor, you lose the move

operations . 71
Note 18: Be aware of std::initializer_list 73
Note 19: Test for noexcept move . 79
Note 20: Use ref-qualifiers for more efficiency 81
Note 21: Use reference qualifiers on assignment operators 85
Note 22: Understand user-declared and user-defined 89

Acronyms 93

Bibliography 95

Index 97

C++11 19

Notes belonging to C++11

Note 1: Understand the type of move used in C++ 25
Note 2: Move is nothing special . 27
Note 3: Move vs. copy . 31
Note 4: Move is a partial swap . 35
Note 5: std::move doesn’t move . 37
Note 6: Understand the value categories 39
Note 7: Make your rvalue parameters modifiable 43
Note 8: Only classes with dynamic memory profit from move

semantics . 45
Note 9: A moved-from object isn’t special 47
Note 10: Never use std::move on a return value 49
Note 11: Remember to forward the move to all the base classes 51
Note 12: Never use std::move on a temporary 55
Note 13: When is it a forwarding reference 59
Note 14: When to use std::forward 61
Note 15: Your custom class and the STL 65
Note 16: Known when you lose a special member 69
Note 17: Even with a defaulted destructor, you lose the move

operations . 71
Note 18: Be aware of std::initializer_list 73
Note 19: Test for noexcept move . 79
Note 20: Use ref-qualifiers for more efficiency 81
Note 21: Use reference qualifiers on assignment operators 85
Note 22: Understand user-declared and user-defined 89

20

Notes belonging to C++17

C++20 21

Notes belonging to C++20

22

Part 2

Move Semantics

In this part, we discuss

! how move semantics works

! what you have to do to enable move semantics for your data-types

! how to use move semantics efficiently

! ... and more

24

“ ... The only difference is that copying from awon’t change a, but moving from amight.
... ”

— Sutter [2]

Part 2: Move Semantics 25

Note 1: Understand the type of move used in C++ C++11

Before diving in with various other tips, let’s get a fundamental understanding of
move semantics in C++.

In programming languages, in general, we have two different types of move se-
mantics:

! destructive move

! non-destructive move

In C++, we have the latter, but let’s look into the first form first.
A destructivemovemeans that once wemove an object, wewill see later what that

means and how to do it in C++; the source object gets destroyed afterward.
The destructive move approach has a couple of advantages. As the source object

gets destroyed immediately after themove, regardless ofwhether the end of the scope
is reached, we cannot touch it any longer. One of the biggest questions about move
semantics in C++ is the so-calledmoved-from state, which you learn about in Note 9.

Aside from the inability to touch the source object, we do not have to worry about
the state of the moved-from object. Another great advantage.

We don’t have these advantages in C++ since we have a non-destructive move in
C++. That means that the source object follows the standard lifetime rules of C++,
which say that an object is destroyed either at the end of a full expression or at the end
of the scope in which the object was declared. There are scenarios, like in a return
statement, where we cannot touch the source object after the move since we go out
of scope. However, plenty of other scenarios allow us in C++ to still touch the source
object.

What does it mean to still have access to the source object? Well, since you can
touch the source object after the move, the question about what the object’s state is
pops up. The one follows the other. So, is the source object still a valid object? Are
its invariants still intact? These are the two biggest questions when it comes to a
move-from object.

While a destructivemove does not have to care about that, in C++, wemust ensure
that the move-from object is at least destroyable since that will happen at the end of
the object’s scope or lifetime in general.

26 Note 1: Understand the type of move used in C++

Whether we do anything more than that is an implementation detail, making rea-
soning about a move-from object hard.

All that said, there is an advantage to a non-destructive move. We can implement
a move as a constant operation. While a move operationmore or less swaps pointers,
the source object gets destroyed at some point. In C++, we can delay this operation,
making the move itself a constant operation. For example, delete isn’t constant as
the time to really get the okay from your STL depends on the algorithm used to im-
plement the dynamic memory management, potentially the memory currently con-
sumed, and things like getting access to the global memory. All that can be avoided in
a move constructor or move assignment operator, but this is a decision we can make.

If you reach difficultieswith themoved-from state inC++, start treating allmoved-
from objects as if C++ had a destructive move and don’t use them anymore. Only if
you think there is performance wasted measure and see if reusing the moved-from
objects gets you better performance.

Part 2: Move Semantics 27

Note 2: Move is nothing special C++11

While move semantics can positively impact your application’s performance, move
semantics isn’t anything special.

“ The entire point of move semantics is to boost performance. ”
— Hinnant [3]

Keep that in mind because, in the end, move semantics is an optimization that you
can apply but don’t have to. Yet, who wants slow code?

Before starting with move semantics, have a look at the following code example:

L
is
ti
n
g
N
o
te

2
.1

1 void Fun(std::vector<int>& byRef)
2 {
3 std::cout << "byRef\n";
4 }
5

6 void Fun(const std::vector<int>& byConstRef)
7 {
8 std::cout << "byConstRef\n";
9 }

What you see here is function overloading, right? The first implementation of
Fun takes its parameter byRef by reference. As you know, the reference allows the
function to modify the contents of the parameter.

The second function Fun, the overload, takes the parameter as a const reference.
We use this pattern to avoid copies while still preventing the source from modifica-
tion.

I’m sure that’s all stuff you already know. The result is no surprise if we execute
the following calls to Fun.

L
is
ti
n
g
N
o
te

2
.21 void Use()

2 {
3 std::vector v{2, 3, 4};
4 const std::vector cv{5, 6, 7};

28 Note 2: Move is nothing special

L
is
ti
n
g
N
o
te

2
.2

5

6 Fun(v); A We pass a lvalue

7 Fun(cv); B We pass a const lvalue

8 Fun({3, 5, 6}); C We pass a temporary

9 }

What’s interesting in this example is C . Here, a temporary is passed as an argu-
ment to Fun. This call ends up selecting the const & overload of Fun, which is one
additional reason to often use a const reference because this signature also binds to
temporary objects. Hence, the following output is no surprise and makes us happy:

O
u
tp
u
t

$./a.out
byRef
byConstRef
byConstRef

Assume that Fun does take an object that acts like a container holding a pointer to
dynamically allocated memory, like a std::vector or std::string as a parameter.
Of course, there is nothing wrong with that change. Fun still works fine. You don’t
have to change a thing and can still be happy.

Remember, from the beginning, move semantics is a performance optimization.
While you can be happy as your code works correctly, there is a potential for opti-
mizing this code. We are now at a point where move semantics makes or can make a
difference. As with all optimizations, the impact depends on your data.

The optimization we can apply is doing something useful with the temporary ob-
ject. After all, there is a difference between an objectwe still use outside of Fun, which
we want to protect from changes while passed around, and an object that we create
in place only to pass this temporary object to Fun.

Well, we have overloads for a modifiable version of the parameter of Fun, and we
have another overload for the const but still used outside case. What about adding
another overload that takes care of the temporary object case? This is where move
semantics comes to play. For the move semantics overload to get selected, we have
to use the double ampersands &&:

Part 2: Move Semantics 29

L
is
ti
n
g
N
o
te

2
.3

1 void Fun(std::vector<int>& byRef)
2 {
3 std::cout << "byRef\n";
4 }
5

6 void Fun(const std::vector<int>& byConstRef)
7 {
8 std::cout << "byConstRef\n";
9 }
10

11 void Fun(std::vector<int>&& byRvalueRef)
12 {
13 std::cout << "byMoveRef\n";
14 }

Notice that in the example, there is now a third version of Fun taking the std::
vector by &&. Notice also that the parameter here is modifiable. It’s not const. You
can read more about why in Note 7.

Executing this code leads to the following output:

O
u
tp
u
t

$./a.out
byRef
byConstRef
byMoveRef

As you can see, all overloads are now used. The temporary object case C picks the
byMoveRef variant.

So, a straightforward way to see all these new tokens and their behavior is simply
to have another overload that allows selective selection of temporary objects.

Inside that overload function, you can now use the contents of the temporary ob-
ject in a more meaningful way than by taking the object as a const reference.

The great thing so far is that simply providing the function overload that can take
advantage of the temporary object already gives you performance. We haven’t done
anything else special. Utilizing temporary objects is usually the most significant fac-
tor in terms of performance optimization.

30 Note 2: Move is nothing special

Part 2: Move Semantics 31

Note 3: Move vs. copy C++11

So far, we have established that move semantics is nothing special. Amove operation
is a performance operation that we can address by writing the according function
overload.

Let’s revisit the performance gain. Say you’re about to start a job at a new com-
pany in a different city, maybe also a continent, than you’re currently living. Further,
let’s assume the company pays you a fortune of money. More than enough that you
can consider affording two apartments. Keeping the existing apartment but renting
a new one in the new company’s city. Two options to carefully weigh. And congrat-
ulations on the new job!

Figure Note 3.1 illustrates your two options. On the left side, there is the copy
option. You go for two apartments. Should you also enjoy spending time in furniture
stores, that’s probably a good choice. However, in terms of costs, you must spend
hours there, purchasing all the stuff you already have. Maybe the money you spend
there isn’t the biggest factor, remember the new company pays you a fortune, but you
also have to spend hours on all the purchases. Two resources are involved here.

Well, do you prefer spending the fortune on something better? Maybe environ-
mental safety? Good. That would be the right side of Figure Note 3.1, the move.
That’s a common term: when we relocate from A to B, we move. Compared to the
apartment duplication option above, a move is cheap in terms of money and time.
You can hire a moving company. They tell you when they are available and how long
the shipment from A to B will take. If you hire a decent moving company, the costs
and the time will always be less than buying all the things again.

We can further say that the move option is constant in time and cost. Yes, the time
may vary with the relocation distance, but it is constant compared to the hours you
spend in furniture stores.

You can transfer this analogy to C++ when it comes to copy vs. move. Move
semantics in C++ gives us a new option; previously, we had to copy, but now we can
decide to move.

Here is the copy vs. move comparison in the code. A copy is illustrated in List-
ing Note 3.2.

Acronyms

API Application Programming Interface.
AST Abstract Syntax Tree.

CPL Combined Programming Language.

IDE Integrated Development Environment.

RVO return value optimization.

SSO Small String Optimization.
STL Standard Template Library.

UB Undefined Behavior.

94 Note 22: Understand user-declared and user-defined

Bibliography

[1] S. Meyers, Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and
C++14. O’Reilly Media, 2014.

[2] H. Sutter, “Move, simply.” [Online]. Available: https://herbsutter.com/2020/02/
17/move-simply/

[3] H. Hinnant, “Everything You EverWanted To KnowAboutMove Semantics (and
then some),” ACCU, Apr. 2014. [Online]. Available: https://accu.org/content/
conf2014/Howard_Hinnant_Accu_2014.pdf

[4] D. W. Barron, J. N. Buxton, D. F. Hartley, E. Nixon, and C. Strachey, “The Main
Features of CPL,” The Computer Journal, vol. 6, no. 2, pp. 134–143, 08 1963.
[Online]. Available: https://doi.org/10.1093/comjnl/6.2.134

[5] B. Stroustrup, ““new” value terminology.” [Online]. Available: https://www.
stroustrup.com/terminology.pdf

[6] D. Abrahams, Exception-Safety in Generic Components. Generic Programming:
International Seminar on Generic Programming Dagstuhl Castle, April 2000, pp.
69–79.

[7] “Compiler explorer - user-provided destructor.” [Online]. Available: https:
//compiler-explorer.com/z/qa9o8ssKz

https://herbsutter.com/2020/02/17/move-simply/
https://herbsutter.com/2020/02/17/move-simply/
https://accu.org/content/conf2014/Howard_Hinnant_Accu_2014.pdf
https://accu.org/content/conf2014/Howard_Hinnant_Accu_2014.pdf
https://doi.org/10.1093/comjnl/6.2.134
https://www.stroustrup.com/terminology.pdf
https://www.stroustrup.com/terminology.pdf
https://compiler-explorer.com/z/qa9o8ssKz
https://compiler-explorer.com/z/qa9o8ssKz

96 Note 22: Understand user-declared and user-defined

Index

A

API . 85
AST . 15

C

C++
Insights . 12

copy elision . 49, 57
CPL . 39

I

IDE . 15

L

lvalue . 37–40, 59, 81
object . 83

M

move semantics25, 28, 39, 40, 45, 47, 49, 55, 59, 81

O

object
temporary . . 29, 36, 43, 55, 57, 71, 82, 84, 86

P

perfect
forwarding . 73, 77

R

reference
forwarding . 59, 61, 62
lvalue . 37, 43
rvalue . 37, 41, 59, 83

rvalue . 37–40, 43, 59, 81
object . 83

RVO . 49

S

SSO . 75
std::forward . 63
std::move 37, 40, 47–49, 52, 55–57, 61, 63
std::move_if_noexcept 79, 80
STL . 11, 26, 48, 66, 67, 79

U

UB . 61

	Foreword
	Using Code Examples
	About the Author
	About the Book
	About the Tools
	Table of Contents
	Notes by Standard at a Glance
	Notes belonging to C++11
	Notes belonging to C++17
	Notes belonging to C++20

	2 Move Semantics
	Note 1: Understand the type of move used in C++
	Note 2: Move is nothing special
	Note 3: Move vs. copy
	Note 4: Move is a partial swap
	Note 5:std::move doesn't move
	Note 6: Understand the value categories
	Note 7: Make your rvalue parameters modifiable
	Note 8: Only classes with dynamic memory profit from move semantics
	Note 9: A moved-from object isn't special
	Note 10: Never use std::move on a return value
	Note 11: Remember to forward the move to all the base classes
	Note 12: Never use std::move on a temporary
	Note 13: When is it a forwarding reference
	Note 14: When to use std::forward
	Note 15: Your custom class and the STL
	Note 16: Known when you lose a special member
	Note 17: Even with a defaulted destructor, you lose the move operations
	Note 18: Be aware of std::initializer_list
	Note 19: Test for noexcept move
	Note 20: Use ref-qualifiers for more efficiency
	Note 21: Use reference qualifiers on assignment operators
	Note 22: Understand user-declared and user-defined

	Acronyms
	Bibliography
	Index

